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Course Description:
The course is intended for Ph.D. and MSQE students.
The objective is to familiarize with basic concepts of
unconstrained and constrained static optimization and
to apply them to standard economic problems.

Contact Information:
Damir Stijepic
Room 3.56 (House of Finance)
dstijepic@wiwi.uni-frankfurt.de

Damir Stijepic

mailto:dstijepic@wiwi.uni-frankfurt.de


Static
Optimization

Organizational
Issues

Basics

General
Remarks

Unconstrained
Optimization

Constrained
Optimization

Organizational Issues

Time and Place:
Location: House of Finance, Room E.20 (DZ Bank)
Time: Monday to Friday, 10:30-12:00 and 13:00-14:30

Course Website:
www.damir.stijepic.com/teaching/

Course Material:
Lectures notes and auxiliary materials are available on
the course website. Problem sets will be distributed in
class.

Damir Stijepic
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Course Outline:

Monday 10 : 15−11 : 45 Introduction
Monday 13 : 00−14 : 30 Basic Concepts
Tuesday 10 : 30−12 : 00 Existence and Uniqueness
Tuesday 13 : 00−14 : 30 Unconstrained Optimization II
Wednesday 10 : 30−12 : 00 Constrained Optimization I
Wednesday 13 : 00−14 : 30 Constrained Optimization II
Thursday 10 : 30−12 : 00 Applications I
Thursday 13 : 00−14 : 30 Applications II
Friday 10 : 30−12 : 00 Review
Friday 13 : 00−14 : 30 Questions and Discussion
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Problem Sets
Discussion of problems sets as fits. Preferably in the
afternoon.

Questions and Discussion Session
Please send me your questions no later than Thursday 4pm.
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Lecture notes for this course are partly based on Prof. Dr.
Matthias Blonski’s lecture notes for OMAT (2008).

Course material from the last year’s per-semester course is
available here:

http://badarinza.net/download/

Password: ****

Damir Stijepic

http://badarinza.net/download/
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Overview

1 Sets
closed, open, bounded, compact, convex

2 Functions
continuous, monotonic, convex, concave, quasi-convex

Note: This lecture is restricted to subsets of RN .
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Set

A collection of well defined and distinct objects.

If an object e belongs to the set S, we refer to it as an
element of the set S.

Notation: e ∈ S, e /∈ S
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Interior Point

A point x ∈ X is an interior point of X , if there is an ε > 0, so
that ||x − y || < ε implies y ∈ X .

Boundary Point

A point x ∈ RN is a boundary point of X , if for all ε > 0

i) {y |y ∈ RN , ||x − y || < ε} ∩ X 6= {} and
ii) {y |y ∈ RN , ||x − y || < ε}\X 6= {}.

The set of all boundary points of X is said to be the
boundary of the set X , denoted δX .
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Open Set

Let X ⊂ RN . X is said to be open if for every x ∈ X there is
an ε > 0 so that ||x − y || < ε implies y ∈ X .

Closed Set

Let X ⊂ RN . X is said to be closed if for every sequence x i ,
i = 1,2,3, ..., satisfying

i) x i ∈ X and
ii) x i → x0,

it follows that x0 ∈ X .
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Bounded Sets

Let X ⊂ RN . X is said to be bounded if there is a k ∈ R so
that
X ⊂ {x |x ∈ RN , |xi | ≤ k , i = 1...N}.
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Compact Sets

Let X ⊂ RN . X is said to be compact if X is closed and
bounded.
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Convex Sets

Let X ⊂ RN . X is said to be convex if x , y ∈ X implies
{z|z = αx + (1− α)y ,0 ≤ α ≤ 1} ⊂ X .
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Function

Let X and Y be two non-empty sets. If with each element
x ∈ X is associated one and only one element y ∈ Y , a
function f from X to Y is defined.

We use following notations: f : X → Y , x
f−→ y , or y = f(x).

The variable x is referred to as the argument of the function
f , and y is referred to as the value of the function f at x .

The set {x ∈ X |∃y ∈ Y , y = f(x)} is referred as the domain,
and {y ∈ Y |∃x ∈ X , y = f(x)} as the range of the function.
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Continuous Functions

Let f : A→ B, A ⊂ Rm and B ⊂ Rp. The function f is said
to be continuous at a ∈ A if xν ∈ A, ν = 1,2, ... and xν → a
implies f(xν)→ f(a).

A function f is continuous on C ⊂ A, if f is continuous for all
x̂ ∈ C.
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Monotonicity
A function f : X → Y with X ⊂ RN , Y ⊂ R and
f(x1, x2, ...xn) = f(x) ∈ R is said to be

(i) monotonically increasing in xi , if for all x , x ′ ∈ X with
x ′

i > xi and x ′
j = xj for all j ∈ {1, ...,n}\{i}

f(x ′) ≥ f(x).
(ii) monotonically decreasing in xi , if for all x , x ′ ∈ X with

x ′
i > xi and x ′

j = xj for all j ∈ {1, ...,n}\{i}
f(x ′) ≤ f(x).

If f is monotonically increasing (decreasing) in all xi ,
i = 1,2, ...,n, the function f is said to be monotonically
increasing (decreasing).
Replacing ≥ and ≤ with > and < in (i) and (ii), respectively,
yields the respective definitions for strict monotonicity.
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Concavity and Convexity

A function f : X → Y with the convex set X ⊂ RN , Y ⊂ R is
said to be

(i) convex, if for all x , x ′ ∈ X with x 6= x ′ and all λ ∈ (0,1)
f(λx + (1− λ)x ′) ≤ λf(x) + (1− λ)f(x ′), and

(ii) concave, if for all x , x ′ ∈ X with x 6= x ′ and all λ ∈ (0,1)
f(λx + (1− λ)x ′) ≥ λf(x) + (1− λ)f(x ′).

Replacing ≤ and ≥ with < and < in (i) and (ii), respectively,
yields the respective definitions for strict convexity and
concavity.
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Quasi-Concavity

A function f : X → Y with the convex set X ⊂ RN , Y ⊂ R is
said to be quasi-concave, if for all x , x ′ ∈ X with x 6= x ′ and
all λ ∈ (0,1)
f(λx + (1− λ)x ′) ≥ min{f(x), f(x ′)}.

Replacing ≥ with >, yields the definition for strict
quasi-concavity.
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Overview

1 Local and Global Extrema

2 Existence and Uniqueness
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Local and Global Extrema

Let f : RN → R. The element x̂ ∈ A ⊂ Def (f) is said to be a
local maximum (minimum) on A if and only if
∃ε > 0 : ∀x ∈ {x |||x − x̂ || ≤ ε} ∧ A it holds: f(x) ≤ (≥)f(x̂).

The element x̂ ∈ A ⊂ Def (f) is said to be a global
maximum (minimum) on A if and only if
∀x ∈ A it holds: f(x) ≤ (≥)f(x̂).
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Existence (Weierstrass)

Let f be a function from S to T . If f is continuous on S, and
if S is compact, non-empty, then f(S) has a maximum and
a minimum.
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Uniqueness

Let A ⊂ Def (f) ⊂ RN be a convex set and let f : RN → R

be strictly quasi-concave on A. Then there exists at most
one solution to the optimization problem maxx∈A f(x).
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Existence and Uniqueness

Let A ⊂ Def (f) ⊂ RN be a non-empty, compact and convex
set and let f : RN → R be continuous and strictly
quasi-concave on A. Then there exists exactly one solution
to the optimization problem maxx∈A f(x).
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1 Necessary and Sufficient Conditions for Local Extrema

2 Sufficient Conditions for Global Extrema
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Local Extrema

Let f : RN → R be a C2-function with Def (f) = R
N . It holds

1 If x̂ is a local maximum, then
∇f(x̂) = 0 and Hf(x̂) is negative semidefinite.

2 If x̂ is a local minimum, then
∇f(x̂) = 0 and Hf(x̂) is positive semidefinite.

3 If ∇f(x̂) = 0 and Hf(x̂) is negative definite,
then x̂ is a local maximum.

4 If ∇f(x̂) = 0 and Hf(x̂) is positive definite,
then x̂ is a local minimum.
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Global Extrema

Let f : RN → R be a C2-function and let the function be
concave. It holds: ∇f(x̂) = 0⇔ x̂ is a global maximum.
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1 Lagrange Function and Kuhn-Tucker Conditions

2 Necessary and Sufficient Conditions

3 Equality Constraints
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Optimization Problem

Optimization Problem

max
x

f(x) subject to gj(x) ≥ 0 for j = 1, ...,m, (1)

where the functions f, gj : R
N → R are assumed to be

differentiable.
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Lagrange Function

Lagrange Function

The function

L(x , λ) = f(x) +
m∑

j=1

λjgj(x) (2)

is said to be the the Lagrange function of the maximization
problem

max
x

f(x) subject to gj(x) ≥ 0 for j = 1, ...,m. (3)

The variable λj is said to be the Lagrange multiplier of the
constraint gj(x) ≥ 0.
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Kuhn-Tucker Conditions

The conditions

1 ∇f(x) +
∑m

j=1 λj∇gj(x) = 0,
2 gj(x) ≥ 0 for j = 1, ...,m,
3 λj ≥ 0 for j = 1, ...,m, and
4 λjgj(x) = 0 for j = 1, ...,m,

are said to be the Kuhn-Tucker conditions (KT) of the
maximization problem

max
x

f(x) subject to gj(x) ≥ 0 for j = 1, ...,m. (4)
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Constraint Qualification

Constraint Qualification

The point x̂ satisfies the Constraint Qualification (CQ) if and
only if the gradient vectors ∇gj(x̂) are linearly independent
for the j ∈ {1, ...,m}, where the respective constraints are
binding, i.e. gj(x̂) = 0.
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Necessary Conditions

Let f, gj : R
N → R be differentiable functions at the relevant

points. Let x̂ be a solution of the maximization problem

max
x

f(x) subject to gj(x) ≥ 0 for j = 1, ...,m, (5)

and let x̂ satisfy the Constraint Qualification. Then there are
Lagrange multipliers λ̂, so that for (x̂ , λ̂) the Kuhn-Tucker
conditions are satisfied.
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Sufficient Conditions

Let f, gj : R
N → R be at the relevant points differentiable

functions, and let f be concave and gj quasi-concave.
Furthermore, let (x̂ , λ̂) satisfy the Kuhn-Tucker conditions.
Then x̂ is a solution to the maximization problem

max
x

f(x) subject to gj(x) ≥ 0 for j = 1, ...,m. (6)

Damir Stijepic



Static
Optimization

Organizational
Issues

Basics

General
Remarks

Unconstrained
Optimization

Constrained
Optimization
Lagrange Function
and Kuhn-Tucker
Conditions

Necessary and
Sufficient Conditions

Equality Constraints

Constrained Optimization
Necessary Conditions

Necessary Conditions

Let f, gj : R
N → R be differentiable functions at the relevant

points. Let x̂ be a solution of the maximization problem

max
x

f(x) subject to gj(x) = 0 for j = 1, ...,m, (7)

and let x̂ satisfy the Constraint Qualification. Then there are
Lagrange multipliers λ̂, so that for (x̂ , λ̂) the simplified
Kuhn-Tucker (KT’) conditions

1 ∇f(x) +
∑m

j=1 λj∇gj(x) = 0, and
2 gj(x) = 0 for j = 1, ...,m,

are satisfied.
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Sufficient Conditions

Let f, gj : R
N → R be at the relevant points differentiable

functions, and let f be concave and gj linear functions.
Furthermore, let (x̂ , λ̂) satisfy the simplified Kuhn-Tucker
conditions (KT’). Then x̂ is a solution to the maximization
problem

max
x

f(x) subject to gj(x) = 0 for j = 1, ...,m. (8)
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